在经济社会发展过程中,能源的供需矛盾日益突出,对于绿色可再生能源的开发与应用成为了解决这一矛盾的关键所在。在这样的大背景下,风力发电的优势格外显著,风电项目的开发利用越来越受到重视,目前已成为新能源的发展重点之一。
在风电项目建设过程中,作为重要组成部分,风电基础有着无可替代的重要作用。为了满足风电机组能够正常运营,风电基础建设的体积大、厚度高,为大体积混凝土。如果在质量上把控不严,基础出现质量问题,将直接对风电机组的正常运营造成严重威胁,甚至导致事故的发生。
对于风电基础混凝土缺陷及裂缝的检测,可依据NB/T10227-2019《水电工程物探规范》及CECS21:2000《超声法检测混凝土缺陷技术规程+》、JGJ/T456-2019《雷达法检测凝土结构+技术标准》等标准规范进行。
检测风电基础混凝土内部缺陷有多种物探方法可供选择,探地雷达法是较为常见的一种。采用探地雷达对风电基础混凝土缺陷进行检测时,由于不同频率天线的探测能力不同,要综合考虑对探测深度与分辨率的需求,结合以往的检测经验选择合适的天线频率,以保证原始数据的真实、可靠详细。
风电机组的运行环境很多时候是及其恶劣的,比如大多数风电机组安装在山地、戈壁沙漠等野外环境,不可避免要长期受风沙、日晒、雨淋、盐雾等侵袭。势必带来风机防腐方面的难题,国内对于风机混塔(架)底部基础环外的防腐并未形成行业标准。大部分业主未进行有效的底部基础缝隙的防腐处理。、由于部分风机所处环境昼夜温差大,载荷变化频繁,不同风机的基础地质条件也各不相同,以上多种因素造成风机运行环境恶劣,直接关系到设备的健康状况,影响设备的使用寿命。
目前,风电机组的设计寿命大多是20年,在这期间,每一个塔架螺栓至少要被力矩扳手拉伸40多次,这使螺栓接近设计疲劳期。在实际的运行工况下风机必须适应在各种风速下运行,塔架螺栓和焊缝受各方向的剪切力,极有可能造成焊缝的应力集中或螺栓的过度疲劳,致使风机使用寿命降低。
风电混塔结构安全检测是确保风电场长期稳定运行的关键环节。通过检测,可以及时处理安全隐患,延长风电混塔的使用寿命,并确保风电场的高效运行。
本项目检测对象所属风电场共39台风机,本次检测对风电场进行抽检,分别为2号、5号、8号、11号、25号、26号、29号、32-39号风机,共计15台风机需进行风机基础沉降观测、风机基础环法兰盘水平度测试检测。
(1)基础环上法兰盘水平度检测时,用水平仪进行校验,校验时应按圆周方向均分6点。本次检测法兰盘内圈因内部空间受限,仅在塔筒外侧进行基础环上法兰盘外圈水平度检测,通过检测法兰盘侧面水平度来判断基础环上法兰盘平整度。使用全站仪以第一个点为基准,依次测定风机基础环上法兰盘外侧数据,当点位无法通视时,需转换基准点与可视出,测量出所有点位高程点后计算各点位高差,以求得风电机组基础环上法兰盘水平度。
(2)垂直位移观测时先后视水准基点,接着依次前视各沉降观测点,Zui后后视该水准基点,两次后视读数之差不应超过±1mm。沉降观测的水准路线(从一个水准基点到另一个水准基点)应为闭合水准路线。
风电混塔是一种将风电机组支撑在塔架上的结构,它可以提供更强的支撑力和更稳定的结构,从而提高风电机组的工作效率和寿命。喀什风电塔检测,目前,风电机组的设计寿命大多是20年,在这期间,每一个塔架螺栓至少要被力矩扳手拉伸40多次,这使螺栓接近设计疲劳期。中频炉加热料段时,常常因停起炉而使温度不稳,造成轴件温度过高或过低,此时应对停起炉时加热的前1~2炉料段全部测温,温度不符合规范时,应甩出,对温度不稳时轧制的产品全部进行超声波探伤。模具参数选择及维护保养当断面收缩率较小时,应选择较大的成形角角;应选择较小的角。为减少疏松,应尽可能选择较大的角。当断面收缩率<35%时,应选择较小的角,否则易疏松;当>70%时,也应选择较小的角,否则易缩颈;塑性较差的材料,也要选择较小的角。